Obstacle avoidance of autonomous vehicles based on model predictive control

نویسندگان

  • J-M Park
  • D-W Kim
  • Y-S Yoon
  • H J Kim
چکیده

This paper presents an obstacle avoidance scheme for autonomous vehicles as an active safety procedure in unknown environments. Safe trajectories are generated using the non-linear model predictive framework, in which the simplified dynamics of the vehicle are used to predict the state of the vehicle over the look-ahead horizon. To compensate for the slight dissimilarity between the simplified model and the actual vehicle, a separate controller is designed to track the generated trajectory. The longitudinal dynamics of the vehicle are controlled using the inverse dynamics of the vehicle powertrain model, and the lateral dynamics are controlled using a linear quadratic regulator. In the non-linear model predictive framework, to obtain safe trajectories, local obstacle information is incorporated into the performance index using a parallax-based method. Simulation results on a full non-linear vehicle model show that the proposed combination of model-predictive-control-based trajectory generation and tracking controller gives satisfactory online obstacle avoidance performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Formulation of Formation Flight Based on Model Predictive Control with Collision Avoidance Scheme

This paper addresses the application of Model Predictive Control (MPC) approach for formation flight control and coordination of autonomous unmanned aerial vehicles. The Nominal Decentralized Model Predictive Control (NDMPC) is presented and its enhancement to deal with the model uncertainty and disturbances, called the Robust Decentralized Model Predictive Control (RDMPC), is also proposed and...

متن کامل

Predictive Control of Autonomous Ground Vehicles with Obstacle Avoidance on Slippery Roads

Two frameworks based on Model Predictive Control (MPC) for obstacle avoidance with autonomous vehicles are presented. A given trajectory represents the driver intent. An MPC has to safely avoid obstacles on the road while trying to track the desired trajectory by controlling front steering angle and differential braking. We present two different approaches to this problem. The first approach so...

متن کامل

Obstacle avoidance for an autonomous vehicle using force field method

This paper presents a force field concept for guiding a vehicle at a high speed maneuver. This method is  similar to potential field method. In this paper, motion constrains like vehicles velocity, distance to obstacle and tire conditions and such lane change conditions as zero slop condition and zero lateral acceleration are discussed. After that, possible equations as vehicles path ar...

متن کامل

An Mpc Algorithm with Combined Speed and Steering Control for Obstacle Avoidance in Autonomous Ground Vehicles

This article presents a model predictive control based obstacle avoidance algorithm for autonomous ground vehicles in unstructured environments. The novelty of the algorithm is the simultaneous optimization of speed and steering without a priori knowledge about the obstacles. Obstacles are detected using a planar LIDAR sensor and a multi-phase optimal control problem is formulated to optimize t...

متن کامل

Spatial Predictive Control for Agile Semi-Autonomous Ground Vehicles

This paper presents a formulation to the obstacle avoidance problem for semi-autonomous ground vehicles. The planning and tracking problems have been divided into a two-level hierarchical controller. The high level solves a nonlinear model predictive control problem to generate a feasible and obstacle free path. It uses a nonlinear vehicle model and utilizes a coordinate transformation which us...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011